Project 2: Getting Started

Open NetBeans. Create a java project
called “TextStatistics”

x New Java Application

Steps Name and Location

1. ChooseProject

. Project Name:
2. Name and Location

lTextStatistics\]

Project Location: /home/pluska/Desktop/APComDSci/ProJeth/SoLutioms. Browse. .,

Project Folder: \/Desktop/APCompSci/Project2/Solutions/TextStatistics

[T} Use Dedicated Folder for Stering Libraries

& Create Main Class |textstatistics. TextStatistics

@ Project Folder already exists and is not empty.

Navigate to “TextStatisticsInterface.java”
in your downloads directory. Copy this
file. Then paste it in the TextStatistics
project.

Projects X e
» & exceptions
» & HMWK29
» & TextStatistics
[» & TextStatistics2

» & TextStatistics3

v & TextStatistics4
¥ @ Source Packages

v BB textstatistics4

[TextStatistics4.java

» 8 Libraries

|7 Projects| (FIFiles] Services T

= D B D QI o

Right click on your project package
“textStatistics”. Select New — Java
class.

Call the class “ProcessStatistics”

= New Java Class

Steps Mame and Location

1. Choose File Type

= Class Mame: [ProcessStatist\cs|
2. Name and Location

Projeck: TextStatistics4
Location: Source Packages
Package: textstatistics4

Created File: [;/TextStatistics4/src/textstatistics4/ProcessStatistics.j.

| Einish. Cancel Hi

< Back lext =

Project 2: Getting Started

The arguments your program will accept
are text files. Create a folder for the text
files. Right click on the project package
and select new — folder

Title the folder eTexts.

o< New Folder
Steps

1. Choose File Type
2. Name and Location

Name and Location

Folder Name: [eTexts

Project: TextStatistics4

ParentFolder: | src/textstatistics4 Brows

Created Folder: |:2/Solutions,/TextStatistics4/src/textstatistics4/eTe

Place the required text files in this folder

[# TextStatisticsinterface| 6
» 0§ TestPackages 7
» @ Libraries 8
» @ TestLlibraries

pac

Right click on the testfile and select
properties. Click on the icon to the far
right of the “All files” option. Select the
file path in the popup window and copy
this to your clip board.

SE*
. - 9 *
» & TextStatistics3 .
v & TextStatisticsd 10
v @ Source Packages 11 */
v BB textstatistics4 12 pub
[8 ProcessStatistics.java 13
[8 TextStatistics4 java 14
[TextStatisticsinterface| qg I:T
v [H textstatistics4.eTexts 16
» @ TestPackages 17
» @ Libraries 18 }
» @ TestLUbraries 19
wwwwwwwwwwww y e e W - W E R T S B 2= s W m == =

Lo
2 * To ché=properties saders in Pr
3 * To chéName testfile.txt nplates
va 4 * and oFFiLeSize 465
5 *f Modification Time thar 22, 2017 3:25:26 PM
6 package JAllFiles /home/pluska/Desktop/AP... ..
7

testfile.txt - All Files

va Select and copy the path to the clip board

Close

To configure your project to accept
arguments, go to Run - set project
configuration — customize

In the arguments text box we need to add
an array of arguments for our program to
accept. The first argument will be
“badFile” because we want to make sure
our program tests for bad files. The

Runtime Platform: Project Platform

;&QtisticslProcessText

[badFileJ nhome/pLuska/DesktoD/APCOmpSci/Projectz/SolutionS/TextStatisticsal/sr

VM Options: \ /

Type badFile followed by a comma,

then paste the path to the file you just copied
(e.g. -¥ms10m)

Main Class:

Arguments:

Working Directory:

Project 2: Getting Started

second argument will be the file path you
copied to our clip board.

Type “badFile,” then after the comma
paste the contents of your clipboard.

To test whether or not everything is
working, return to the processStatistics
class and add
System.out.println(args.length);

to the main method.

Run your program. The number “2”
should display.

public class ProcessStatistics {
public static void main(String[] args){

System.out.println(args. length);

The first thing your project should test
for is whether or not the user has passed
in an argument. This can be done by
checking the length of the args array. If
the length is less than 1, no arguments are
present and we need to print the usage
statement.

Modify the main method to include this
check by replacing the

System.out.println(args.length);
with,
if(args.length < 1){

System.out.println("Usage:ProcessText
filel [file2 ...]");

telse{}

L

public class ProcessStatistics {
public static void main(Stringl[] args){

if(args.length < 1){

System,out.println("Usage:ProcessText filel [file2 ...

}else{}

1"

);

Project 2: Getting Started

If an argument has been passed, we can
create a File object out of the argument.

For this project we need to create File
objects out of all the arguments, then
process the associated statistics. To do
this we will need a loop.

Add the following loop to the else clause.
This loop will iterate through all the
arguments passed (args) and will turn
each into a File object.

Notice you have an error, we will fix that
next.

L
public class ProcessStatistics {
=] public static void main(String[] args){
if(args.length < 1){
System.out.println("Usage:ProcessText filel [file2 ...]1");
Telse{
for(String arg : args){

File file = new File(arg);

—— space

To fix the error, click on the light bulb
and import the required File library

if(args.length < 1){
System.out.println("Usage:ProcessText filel [file2 ..
Yelse{

)

for(String arg : args){

File file = new File(arg);

v

¥ Createclass’ Flte in package textstatistics4 (Source Packages)

¥ Create class "File" with constructor "File(java.lang. String)" in package textstatistics4 (Source Packages)
¥ Create class "File" in textstatistics4.ProcessStatistics

¥ Create class "File" in textstatistics4.ProcessStatistics

- ¥

The bulk of the code for this project will
take place in the TextStatistics
constructor. Go to the TextStatistics

a File object as a parameter.

Add the File library import just as you
did before.

class. Create a constructor which accepts |

public class TextStatistics4 implements TextStatisticsInterface{

public TextStatisticsd4(File file){

Project 2: Getting Started

ace,

12 public class TextStatisticsd implements TextStatisticsInterface{

% public TextStatisticsd(File file){
15 "
16 ¥ Create class "File" in package textstatistics4 (Source Packages)
17 9 Create class "File" in textstatistics4, TextStatistics4

With our TextStatistics constructor
written, we now can create objects with
our new Files. Return to the
ProcessStatistics class and add the
following to the else clause,

TextStatistics ts =
new TextStatistics(file);

ace,)

18 if(args.length < 1){

19 System. out.println("Usage:ProcessText filel [file2 ...1");
20 Yelse{

21

22 for(String arg : args){

23

24 File file = new File(arg);

25 TextStatistics4 ts = new TextStatisticsd(file);
26

27 }

e} 1

Now return to the TextStatistics class.

In order to process our File we need to
retrieve the file that was passed from the
TextStatistics class and create a Scanner
to scan its contents.

Create a File instance variable called
“textFile” and a Scanner instance

|

public class TextStatistics4 implements TextStatisticsInterface{

private File textFile;
private Scanner fileScan;

public TextStatistics4(File file){
textFile = file;

fileScan = new.Scanner(textFile);

variable called “fileScan”. These should :
be declared as private as shown right.
In the constructor, assign the parameter
file to textFile and create a new Scanner
with the textFile.
Notice we have an error...
The error occurs, because java needs you ||° orivate File textFile;
to check whether or not the file to be o - private Scanner fileScan;
scanned is valid. You can do this with a 20 public TextStatistics4(File file){
try-catch. Click on the light bulb next to o textFitle = file;
the error and select “Surround statement = P — —
with try-catch” 25 @ Add throws clause For java.io. FileNetFoundException
;g 8 Surround Block with try-catch

Project 2: Getting Started

In the catch clause, delete the default
error message and replace with your own
as shown right.

try {
fileScan = new Scanner(textFile);
} catch (FileNotFoundException ex) {

System.out.println("File cannot be located");

Now that we have our file loaded in our
scanner we can scan it for information.
For example, the number of lines of text.

Create a new state variable called
lineCount.

In the try clause, add the following,

while(fileScan.hasNextLine()){
fileScan.nextLine();
lineCount++;

}

In the above code, “hasNextLine()” is a
boolean. It checks whether or not there is
another line of code in the document. If
there is we increment lineCount and go to
the next line (fileScan.nextLine()). We
continue this process until there are no
more lines.

private File textFile;

private Scanner fileScan;

private int lineCount; e———

public TextStatistics4(File file){
textFile = file;

try {
fileScan = new Scanner(textFile);

while(fileScan.hasNextlLine()){
fileScan.nextLine();|
lineCount++;

¥

} catch (FileNotFoundException ex) {

Now that we have counted all the lines,
we need a method which allows the main
driver method access to the value.

Notice that we declared lineCount as
private. As a private variable the main
method cannot access the value.

Go to the method “getLineCount()”.
This was one of the abstract methods we
implemented from the interface. Delete
the default code and add the return
statement, “return lineCount”. Because
this is a public method, the main method
can access it.

@0verride

public int getLineCount() {

<— Delete the default code
| return lineCount; | <«<— add a return value

h

Project 2: Getting Started

Return to the ProcessStatistics class.

The project description requires that we
print out the stats for the valid files only.
To do this, we must first check whether
or not the file of interest exists. If it does
we then can show the stats. In this
tutorial, you learned how to count the
total lines in a text document. To print
out the total lines associated with our
valid file, add the following lines of code
to the for loop,

if(file.exists())

{
System.out.println(ts.getLineCount());

}

for(String arg : args){

File file = new File(arg);
TextStatistics4 ts = new TextStatistics4(file);

if (file.exists()){
System.out.println(ts.getLineCount());
s

Now, run your program...

The first file in are arguments, “badFile”,
cannot be located, but the second file was
analyzed. It has 11 lines of code. To
check if you are correct, click on the file
in your project view.

UUCPUL - | eXC>Latistcs4 (run)

| run:

jp | File cannot be located

11

BUILD SUCCESSFUL (total time: 0 seconds)
|

L]

= exceptions

& HMwK2s Source | History B-8- 9% R ¢
& TextStatistics P2 testfile -----

& TextStatistics2 2
@__Stjurce Packages 3
v [textstatistics2

|8 ProcessStatistics.java 4

[8 TextStatistics2.java b

6
7
8

hi a ile for the fourth progr:
which contains numbers
a5 word Ke doNwt and pre-condition whi
file has 79 words. he longest one has
1. The average length ©of_a word is 4. Tt
in the input.

[# TextStatisticsinterface.java
@@ Test Packages
B Libraries
B TestLibraries 9
S TextStatistics3
& TextStatistics4
@ SourcePackages 1
v B textstatistics4
& ProcessStatisticséva
8 TextStatisticspfava
|5 TextStatispesinterface. java
v BB textstatis#ésd eTexts

How do you like this program?

It Works!
Finally, the Last line!

@ TestPackages

