
Project 2: Getting Started

Open NetBeans. Create a java project
called “TextStatistics”

Navigate to “TextStatisticsInterface.java”
in your downloads directory. Copy this
file. Then paste it in the TextStatistics
project.

Right click on your project package
“textStatistics”. Select New → Java
class.

Call the class “ProcessStatistics”

Project 2: Getting Started

The arguments your program will accept
are text files. Create a folder for the text
files. Right click on the project package
and select new → folder

Title the folder eTexts.

Place the required text files in this folder

Right click on the testfile and select
properties. Click on the icon to the far
right of the “All files” option. Select the
file path in the popup window and copy
this to your clip board.

To configure your project to accept
arguments, go to Run → set project
configuration → customize

In the arguments text box we need to add
an array of arguments for our program to
accept. The first argument will be
“badFile” because we want to make sure
our program tests for bad files. The

Project 2: Getting Started

second argument will be the file path you
copied to our clip board.

Type “badFile,” then after the comma
paste the contents of your clipboard.

To test whether or not everything is
working, return to the processStatistics
class and add

System.out.println(args.length);

to the main method.

Run your program. The number “2”
should display.

The first thing your project should test
for is whether or not the user has passed
in an argument. This can be done by
checking the length of the args array. If
the length is less than 1, no arguments are
present and we need to print the usage
statement.

Modify the main method to include this
check by replacing the

System.out.println(args.length);

with,

if(args.length < 1){

 System.out.println("Usage:ProcessText
file1 [file2 ...]");

 }else{}

Project 2: Getting Started

If an argument has been passed, we can
create a File object out of the argument.

For this project we need to create File
objects out of all the arguments, then
process the associated statistics. To do
this we will need a loop.

Add the following loop to the else clause.
This loop will iterate through all the
arguments passed (args) and will turn
each into a File object.

Notice you have an error, we will fix that
next.

To fix the error, click on the light bulb
and import the required File library

The bulk of the code for this project will
take place in the TextStatistics
constructor. Go to the TextStatistics
class. Create a constructor which accepts
a File object as a parameter.

Add the File library import just as you
did before.

space

Project 2: Getting Started

With our TextStatistics constructor
written, we now can create objects with
our new Files. Return to the
ProcessStatistics class and add the
following to the else clause,

TextStatistics ts =
new TextStatistics(file);

Now return to the TextStatistics class.

In order to process our File we need to
retrieve the file that was passed from the
TextStatistics class and create a Scanner
to scan its contents.

Create a File instance variable called
“textFile” and a Scanner instance
variable called “fileScan”. These should
be declared as private as shown right.

In the constructor, assign the parameter
file to textFile and create a new Scanner
with the textFile.

Notice we have an error...

The error occurs, because java needs you
to check whether or not the file to be
scanned is valid. You can do this with a
try-catch. Click on the light bulb next to
the error and select “Surround statement
with try-catch”

Project 2: Getting Started

In the catch clause, delete the default
error message and replace with your own
as shown right.

Now that we have our file loaded in our
scanner we can scan it for information.
For example, the number of lines of text.

Create a new state variable called
lineCount.

In the try clause, add the following,

while(fileScan.hasNextLine()){
 fileScan.nextLine();
 lineCount++;
}

In the above code, “hasNextLine()” is a
boolean. It checks whether or not there is
another line of code in the document. If
there is we increment lineCount and go to
the next line (fileScan.nextLine()). We
continue this process until there are no
more lines.

Now that we have counted all the lines,
we need a method which allows the main
driver method access to the value.
Notice that we declared lineCount as
private. As a private variable the main
method cannot access the value.

Go to the method “getLineCount()”.
This was one of the abstract methods we
implemented from the interface. Delete
the default code and add the return
statement, “return lineCount”. Because
this is a public method, the main method
can access it.

Project 2: Getting Started

Return to the ProcessStatistics class.

The project description requires that we
print out the stats for the valid files only.
To do this, we must first check whether
or not the file of interest exists. If it does
we then can show the stats. In this
tutorial, you learned how to count the
total lines in a text document. To print
out the total lines associated with our
valid file, add the following lines of code
to the for loop,

if(file.exists())
{
System.out.println(ts.getLineCount());
}

Now, run your program...

The first file in are arguments, “badFile”,
cannot be located, but the second file was
analyzed. It has 11 lines of code. To
check if you are correct, click on the file
in your project view.

